Михаил Шустов, Андрей Шустов, г. Томск
Предложена схема двуханодного MOSFET тиристора, обладающего повышенным быстродействием, высоким входным сопротивлением и исключительно малыми потерями
Тиристорные (симисторные) коммутаторы нагрузки в силу неустранимых конструкционных особенностей отличаются высоким катод-анодным падением напряжения на них в открытом состоянии и низким быстродействием. В этой связи на подобных коммутирующих элементах рассеивается значительная мощность, порой приводящая к перегреву и выходу из строя полупроводникового прибора. Одновременно на бесполезный нагрев полупроводникового прибора расходуется электроэнергия, что в условиях массового промышленного и бытового применения тиристоров и симисторов ведет к масштабным ее потерям.
Двуханодный MOSFET коммутатор нагрузки с тиристорным управлением (двуханодный MOSFET тиристор), изображенный на Рисунке 1, обладает входными характеристиками быстродействующего тиристора, однако потери на его открытых коммутационных элементах почти на два порядка ниже, чем у традиционных тиристоров. Кроме того, предлагаемый коммутатор имеет в отличие от тиристоров два выхода, один из которых находится во включенном, а второй – в выключенном состоянии. Эти выходы переключаются в соответствии с переключением тиристора.
Рисунок 1. | Внутренняя структура двуханодного MOSFET тиристора и его условное графическое обозначение. |
Коммутатор может быть выполнен с использованием входного слаботочного быстродействующего тиристора или его транзисторного аналога с повышенным входным сопротивлением [1], нагрузкой которого служит высокоомный резистор. К аноду тиристора подключена последовательная цепочка из двух MOSFET транзисторных коммутаторов, рассчитанных на высокий ток нагрузки.
На Рисунке 2 показан вариант схемы практического использования двуханодного MOSFET тиристора. При подаче на вход коммутатора управляющего сигнала прямоугольной формы с широтно-импульсным регулированием возможно плавное без потерь перераспределение мощностей, потребляемых в цепях нагрузок MOSFET тиристора.
Рисунок 2. | Пример схемы включения двуханодного MOSFET тиристора в цепи переменного тока. |
На Рисунке 3 показана практическая схема коммутатора нагрузки на основе двуханодного MOSFET тиристора. Стабилитроны VD3 и VD4 предназначены для защиты управляющих входов транзисторов от возможных перенапряжений. Защитные диоды в цепи исток-сток встроены в структуру транзисторов IRFP362. N-канальные MOSFET IRFP362 могут работать до частоты 1 МГц и рассчитаны на напряжение 400 В при токе нагрузки до 20 А; сопротивление исток-сток открытого транзистора при токе нагрузки 13 А составляет 0.25 Ом.
Рисунок 3. | Практическая схема коммутатора нагрузки с перераспределением мощностей в цепях нагрузок двуханодного MOSFET тиристора. |
Ограничителем верхней частоты питающего напряжения коммутатора (1 кГц) являются входной тиристор VS1, а также диоды VD1 и VD2. Эту частоту можно поднять за счет использования более высокочастотного тиристора VS1, либо его транзисторного аналога [1], и выбора более высокочастотных диодов VD1 и VD2, что осуществимо лишь при снижении напряжения питания.
Диаграммы управляющих сигналов прямоугольной формы напряжением 5 В частотой 10 Гц с коэффициентом заполнения 50% и соответствующих выходных сигналов в цепях нагрузок при напряжении сети 230 В, 50 Гц приведены на Рисунке 4.
Рисунок 4. | Диаграммы сигналов на управляющем входе и анодах двуханодного MOSFET тиристора. |
При использовании двуханодного MOSFET тиристора в сети переменного тока с регулируемым уровнем мощности в цепи одного из его каналов неиспользуемые в случае классических тиристоров «отрезки» синусоиды переменного тока не будут теряться понапрасну и могут быть использованы в цепи его второго канала нагрузки. Кроме того, форма синусоидального сигнала в сети не будет искажена неравномерной нагрузкой на ее «левые» и «правые» составляющие.
Использование MOSFET в составе предложенного варианта двуханодного тиристора обеспечивает его повышенное быстродействие, исключительно малые потери и высокое входное сопротивление. Это приближает двуханодный MOSFET тиристор по своим параметрам к идеальному элементу коммутации.