Источники питания сетевого напряжения на DIN-рейке MEAN WELL

Datasheet MCP47A1 (Microchip) - 10

ПроизводительMicrochip
Описание6-Bit Volatile DAC with Command Code
Страниц / Страница70 / 10 — MCP47A1. TEMPERATURE CHARACTERISTICS. Electrical Specifications:. …
Формат / Размер файлаPDF / 1.9 Мб
Язык документаанглийский

MCP47A1. TEMPERATURE CHARACTERISTICS. Electrical Specifications:. Parameters. Sym. Min. Typ. Max. Units. Conditions. Note 1. Note 1:

MCP47A1 TEMPERATURE CHARACTERISTICS Electrical Specifications: Parameters Sym Min Typ Max Units Conditions Note 1 Note 1:

30 предложений от 16 поставщиков
MICROCHIP MCP47A1T-A0E/LT Digital to Analog Converter, 6Bit, 1.8V to 5.5V, SC-70, 6Pins
EIS Components
Весь мир
MCP47A1T-A0E/LT
Microchip
35 ₽
LIXINC Electronics
Весь мир
MCP47A1T-A0E/LT
Microchip
от 40 ₽
Akcel
Весь мир
MCP47A1T-A0E/LT
Microchip
от 56 ₽
HXD Co.
Весь мир
MCP47A1T-A0E/LT
Microchip
76 ₽
LED-драйверы MOSO для индустриальных приложений

Модельный ряд для этого даташита

Текстовая версия документа

link to page 10
MCP47A1 TEMPERATURE CHARACTERISTICS Electrical Specifications:
Unless otherwise indicated, VDD = +2.7V to +5.5V, VSS = GND.
Parameters Sym Min Typ Max Units Conditions
Temperature Ranges Specified Temperature Range TA -40 — +125 °C Operating Temperature Range TA -40 — +125 °C Storage Temperature Range TA -65 — +150 °C Thermal Package Resistances Thermal Resistance, 6L-SC70 JA — 207 — °C/W
Note 1 Note 1:
Package Power Dissipation (PDIS) is calculated as follows: PDIS = (TJ - TA) / JA, where: TJ = Junction Temperature, TA = Ambient Temperature. DS25154A-page 10  2012 Microchip Technology Inc. Document Outline 1.0 Electrical Characteristics 1.1 I2C Mode Timing Waveforms and Requirements FIGURE 1-1: I2C Bus Start/Stop Bits Timing Waveforms. FIGURE 1-2: I2C Bus Data Timing. TABLE 1-1: I2C Bus Start/Stop Bits Requirements TABLE 1-2: I2C Bus Data Requirements (Slave Mode) 2.0 Typical Performance Curves FIGURE 2-1: INL vs. Code (00h to 3Fh) and Temperature. VDD = 5.5V, VREF = 5.5V, 2.7V, 1.8V, and 1.0V. FIGURE 2-2: INL vs. Code (00h to 3Fh) and Temperature. VDD = 2.7V, VREF = 2.7V, 1.8V, and 1.0V. FIGURE 2-3: INL vs. Code (00h to 3Fh) and Temperature. VDD = 2.0V, VREF = 2.0V, 1.8V, and 1.0V. FIGURE 2-4: INL vs. Code (00h to 3Fh) and Temperature. VDD = 1.8V, VREF = 1.6V, and 1.0V. FIGURE 2-5: DNL vs. Code (00h to 3Fh) and Temperature. VDD = 5.5V, VREF = 5.5V, 2.7V, 1.8V, and 1.0V. FIGURE 2-6: DNL vs. Code (00h to 3Fh) and Temperature. VDD = 2.7V, VREF = 2.7V, 1.8V, and 1.0V. FIGURE 2-7: DNL vs. Code (00h to 3Fh) and Temperature. VDD = 2.0V, VREF = 2.0V, 1.8V, and 1.0V. FIGURE 2-8: DNL vs. Code (00h to 3Fh) and Temperature. VDD = 1.8V, VREF = 1.6V, and 1.0V. FIGURE 2-9: Full Scale Error (FSE) vs. Temperature. VDD = 5.5V, VREF = 5.5V, 2.7V, 1.8V, and 1.0V. FIGURE 2-10: Full Scale Error (FSE) vs. Temperature. VDD = 2.7V, VREF = 2.7V, 1.8V, and 1.0V. FIGURE 2-11: Full Scale Error (FSE) vs. Temperature. VDD = 2.0V, VREF = 2.0V, 1.8V, and 1.0V. FIGURE 2-12: Full Scale Error (FSE) vs. Temperature. VDD = 1.8V, VREF = 1.6V, and 1.0V. FIGURE 2-13: Zero Scale Error (ZSE) vs. Temperature. VDD = 5.5V, VREF = 5.5V, 2.7V, 1.8V, and 1.0V. FIGURE 2-14: Zero Scale Error (ZSE) vs. Temperature. VDD = 2.7V, VREF = 2.7V, 1.8V, and 1.0V. FIGURE 2-15: Zero Scale Error (ZSE) vs. Temperature. VDD = 2.0V, VREF = 2.0V, 1.8V, and 1.0V. FIGURE 2-16: Zero Scale Error (ZSE) vs. Temperature. VDD = 1.8V, VREF = 1.6V, and 1.0V. FIGURE 2-17: Total Unadjusted Error vs. Code and Temperature. VDD = 5.5V, VREF = 5.5V, 2.7V, 1.8V, and 1.0V. FIGURE 2-18: Total Unadjusted Error vs. Code and Temperature. VDD = 2.7V, VREF = 2.7V, 1.8V, and 1.0V. FIGURE 2-19: Total Unadjusted Error vs. Code and Temperature. VDD = 2.0V, VREF = 2.0V, 1.8V, and 1.0V. FIGURE 2-20: Total Unadjusted Error vs. Code and Temperature. VDD = 1.8V, VREF = 1.6V, and 1.0V. FIGURE 2-21: VOUT Tempco vs. Code ( (VOUT(+125C) - VOUT(-40C) / VOUT(+25C,Code=FS) / 165 ) * 1,000,000 ), VDD = 5.5V, VREF = 5.5V, 2.7V, 1.8V, and 1.0V. FIGURE 2-22: VOUT Tempco vs. Code ( (VOUT(+125C) - VOUT(-40C) / VOUT(+25C,Code=FS) / 165 ) * 1,000,000 ), VDD = 2.7V, VREF = 2.7V, 1.8V, and 1.0V. FIGURE 2-23: VOUT Tempco vs. Code ( (VOUT(+125C) - VOUT(-40C) / VOUT(+25C,Code=FS) / 165 ) * 1,000,000 ), VDD = 2.0V, VREF = 2.0V, 1.8V, and 1.0V. FIGURE 2-24: VOUT Tempco vs. Code ( (VOUT(+125C) - VOUT(-40C) / VOUT(+25C,Code=FS) / 165 ) * 1,000,000 ), VDD = 1.8V, VREF = 1.6V, and 1.0V. FIGURE 2-25: VIH / VIL Threshold of SDA/SCL Inputs vs. Temperature and VDD. FIGURE 2-26: VOL (SDA) vs. VDD and Temperature. FIGURE 2-27: Interface Active Current (IDD) vs. SCL Frequency (fSCL) and Temperature VDD = 1.8V, 2.7V and 5.5V, VREF = 1.0V and VDD. (no load on VOUT). FIGURE 2-28: Interface Inactive Current (STATIC) vs. Temperature and VDD. VDD = 1.8V, 2.7V and 5.5V, VREF = 1.0V and VDD. (no load on VOUT, SCL = SDA = VDD). FIGURE 2-29: VOUT vs. Resistive Load. VDD = 5.0V. FIGURE 2-30: VOUT vs. Resistive Load. VDD = 2.7V. FIGURE 2-31: VOUT vs. Source / Sink Current. VDD = 5.0V. FIGURE 2-32: VOUT vs. Source / Sink Current. VDD = 2.7V. FIGURE 2-33: VOUT Accuracy vs. VDD and Temperature. FIGURE 2-34: RVREF Resistances vs. VDD and Temperature. FIGURE 2-35: -3dB Bandwidth vs Frequency, VDD = 5.5V. FIGURE 2-36: Zero-Scale to Full-Scale Settling Time (00h to 40h), VDD = 5.0V, VREF = 5.0V, RL = 5kW, CL = 200 pF (Time scale = 2 µs / div). FIGURE 2-37: Full-Scale to Zero-Scale Settling Time (40h to 00h), VDD = 5.0V, VREF = 5.0V, RL = 5kW, CL = 200 pF (Time scale = 2 µs / div). FIGURE 2-38: Half-Scale Settling Time (10h to 30h), VDD = 5.0V, VREF = 5.0V, RL = 5kW, CL = 200 pF. (Time scale = 2 µs / div) FIGURE 2-39: Half-Scale Settling Time (30h to 10h), VDD = 5.0V, VREF = 5.0V, RL = 5kW, CL = 200 pF (Time scale = 2 µs / div). FIGURE 2-40: Digital Feedthrough (SCL signal coupling to VOUT pin); VDD = 5.0V, VREF = 5.0V, FSCL = 100 kHz, VOUT = 20h (VOUT Voltage Scale = 20 mV/div, Time scale = 2 µs / div). 2.1 Test Circuit FIGURE 2-41: -3 db Gain vs. Frequency Test. 3.0 Pin Descriptions TABLE 3-1: Pinout Description for The MCP47A1 3.1 Positive Power Supply Input (VDD) 3.2 Ground (VSS) 3.3 I2C Serial Clock (SCL) 3.4 I2C Serial Data (SDA) 3.5 Analog Output Voltage Pin (VOUT) 3.6 Voltage Reference Pin (VREF) 4.0 General Overview FIGURE 4-1: Resistor Network and Output Buffer Block Diagram. 4.1 POR/BOR Operation TABLE 4-1: Default POR Wiper Setting Selection TABLE 4-2: Device functionality at each VDD Region FIGURE 4-2: Power-up and Brown-out. 5.0 Serial Interface - I2C Module FIGURE 5-1: Typical Application I2C Bus Configurations. 5.1 I2C I/O Considerations 5.2 I2C Bit Definitions FIGURE 5-2: Start Bit. FIGURE 5-3: Data Bit. FIGURE 5-4: Acknowledge Waveform. TABLE 5-1: MCP47A1 A / A Responses FIGURE 5-5: Repeat Start Condition Waveform. FIGURE 5-6: Stop Condition Receive or Transmit Mode. FIGURE 5-7: Typical 16-bit I2C Waveform Format. FIGURE 5-8: I2C Data States and Bit Sequence. FIGURE 5-9: Slave Address Bits in the I2C Control Byte. TABLE 5-2: Device I2C Address FIGURE 5-10: General Call Formats. 5.3 Serial Commands FIGURE 5-11: I2C Single Byte Write Command Format. FIGURE 5-12: I2C Write Command Format. FIGURE 5-13: I2C Write Communication Behavior. FIGURE 5-14: I2C Read Command Format. FIGURE 5-15: I2C Read Communication Behavior. 6.0 Resistor Network 6.1 RVREF Resistance FIGURE 6-1: Resistor Network and Output Buffer Block Diagram. 6.2 RAB Resistor Ladder 6.3 Serial Buffer to Wiper Register Decode TABLE 6-1: Serial Shift Register value to Wiper Value 6.4 Resistor Variations (Voltage and Temperature) 6.5 POR Value TABLE 6-2: POR/BOR Settings 7.0 Output Buffer 7.1 Output Buffer / VOUT Operation FIGURE 7-1: Output Buffer Block Diagram. TABLE 7-1: Theoretical DAC Output Values FIGURE 7-2: Amplifier Input (VW) to Amplifier Output (VOUT) General Characteristics (VREF = VDD). FIGURE 7-3: Solving for VOUT, VREF, or DAC Register Code. 7.2 Output Slew Rate FIGURE 7-4: VOUT Pin Slew Rate. 7.3 Driving Resistive and Capacitive Loads FIGURE 7-5: Circuit to Stabilize Output Buffer for Large Capacitive Loads (CL). 7.4 Output Errors TABLE 7-2: Calculation Comparison FIGURE 7-6: Output Voltage (VOUT) Error. 8.0 Applications Examples 8.1 DC Set Point or Calibration FIGURE 8-1: Set Point or Threshold Calibration. FIGURE 8-2: Example Circuit Of Set Point or Threshold Calibration. FIGURE 8-3: Single-Supply “Window” DAC. 8.2 Selectable Gain and Offset Bipolar Voltage Output FIGURE 8-4: Bipolar Voltage Source with Selectable Gain and Offset Circuit. FIGURE 8-5: Simplified Bipolar Voltage Source with Selectable Gain and Offset Circuit. 8.3 Building Programmable Current Source FIGURE 8-6: Digitally-Controlled Current Source. 8.4 Serial Interface Communication Times TABLE 8-1: Serial Interface Times / Frequencies 8.5 Software I2C Interface Reset Sequence FIGURE 8-7: Software Reset Sequence Format. 8.6 Design Considerations FIGURE 8-8: Typical Microcontroller Connections. FIGURE 8-9: Example MCP47A1 Circuit. TABLE 8-2: Package Footprint FIGURE 8-10: I2C Bus Connection Test. 9.0 Development support 9.1 Evaluation/Demonstration Boards FIGURE 9-1: SC70EV Bond Out PCB – Top Layer and Silk-Screen. 9.2 Technical Documentation TABLE 9-1: Technical Documentation 10.0 Packaging Information 10.1 Package Marking Information Appendix A: Revision History Appendix B: Terminology Product Identification System Trademarks Worldwide Sales and Service
Электронные компоненты. Скидки, кэшбэк и бесплатная доставка от ТМ Электроникс