AC-DC и DC-DC преобразователи напряжения Top Power на складе ЭЛТЕХ

Datasheet MCP6V91, MCP6V91U, MCP6V92, MCP6V94 (Microchip) - 9

ПроизводительMicrochip
ОписаниеThe MCP6V9x family of operational amplifiers provides input offset voltage correction for very low offset and offset drift
Страниц / Страница48 / 9 — MCP6V91/1U/2/4. Note:. 160. 500. 155. Typical Gains. = 5.5 V. 400. 150. T …
Формат / Размер файлаPDF / 2.9 Мб
Язык документаанглийский

MCP6V91/1U/2/4. Note:. 160. 500. 155. Typical Gains. = 5.5 V. 400. 150. T = +125 ºC. 300. Input Bias Current. 145. PSRR. 200. (dB) 140. Currents. 100. 135

MCP6V91/1U/2/4 Note: 160 500 155 Typical Gains = 5.5 V 400 150 T = +125 ºC 300 Input Bias Current 145 PSRR 200 (dB) 140 Currents 100 135

21 предложений от 10 поставщиков
Микросхема Буферный усилитель, Precision Amplifiers CAN FD Transceiver with Silent Mode
AiPCBA
Весь мир
MCP6V92T-E/MS
Microchip
152 ₽
IC Home
Весь мир
MCP6V92T-E/MS
Microchip
238 ₽
MCP6V92T-E/MS
Microchip
от 503 ₽
Augswan
Весь мир
MCP6V92T-E/MS
Microchip
по запросу

Модельный ряд для этого даташита

Текстовая версия документа

MCP6V91/1U/2/4 Note:
Unless otherwise indicated, TA = +25°C, VDD = +2.4V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2, VL = VDD/2, RL = 10 kΩ to VL and CL = 30 pF.
160 500 155 Typical Gains V = 5.5 V 400 DD 150 T = +125 ºC A 300 Input Bias Current 145 PSRR 200 (dB) 140 Currents 100 135 fset 130 0 PSRR 125 -100 (pA) Input Offset Current RR, 120 CMRR at V = 5.5V -200 DD CM 115 CMRR at V = 2.4V DD -300 110 Bias and Of -400 105 -500 100 Input 0 5 0 5 0 5 0 5 0 5 0 5 0 -50 -25 0 25 50 75 100 125 -0.5 0. 0. 1. 1. 2. 2. 3. 3. 4. 4. 5. 5. 6. Ambient Temperature (°C) Input Common Mode Voltage (V) FIGURE 2-13:
CMRR and PSRR vs.
FIGURE 2-16:
Input Bias and Offset Ambient Temperature. Currents vs. Common-Mode Input Voltage with TA = +125°C.
160 1n 155 V = 5.5 V DD 150 145 100p 140 V = 2.4V DD V = 5.5V DD 135 130 10p Input Offset Current 125 120 Offset Currents (A) Input Bias Current 115 1p 110 DC Open-Loop Gain (dB) 105 Typical Gains 0.1p 100 Input Bias, -50 -25 0 25 50 75 100 125 25 35 45 55 65 75 85 95 105 115 125 Ambient Temperature (°C) Ambient Temperature (°C) FIGURE 2-14:
DC Open-Loop Gain vs.
FIGURE 2-17:
Input Bias and Offset Ambient Temperature. Currents vs. Ambient Temperature with VDD = 5.5V.
500 1m 400 V = 5.5 V DD T = +85 ºC 100µ 300 A 200 10µ tude (A) Input Bias Current 100 ) 0 Offset Currents 100n (pA -100 Input Offset Current T = +125°C A -200 10n T = +85°C A T = +25°C -300 A 1n T = - 40°C A -400 put Current Magni 100p -500 In Input Bias and .5 10p -0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 Input Common Mode Voltage (V) Input Voltage (V) FIGURE 2-15:
Input Bias and Offset
FIGURE 2-18:
Input Bias Current vs. Input Currents vs. Common-Mode Input Voltage with Voltage (Below VSS). TA = +85°C.  2015-2016 Microchip Technology Inc. DS20005434B-page 9 Document Outline 10 MHz, Zero-Drift Op Amps Features Typical Applications Design Aids Related Parts General Description Package Types Typical Application Circuit 1.0 Electrical Characteristics 1.1 Absolute Maximum Ratings 1.2 Specifications TABLE 1-1: DC Electrical Specifications TABLE 1-2: AC Electrical Specifications TABLE 1-3: Temperature Specifications 1.3 Timing Diagrams FIGURE 1-1: Amplifier Start-Up. FIGURE 1-2: Offset Correction Settling Time. FIGURE 1-3: Output Overdrive Recovery. 1.4 Test Circuits FIGURE 1-4: AC and DC Test Circuit for Most Noninverting Gain Conditions. FIGURE 1-5: AC and DC Test Circuit for Most Inverting Gain Conditions. FIGURE 1-6: Test Circuit for Dynamic Input Behavior. 2.0 Typical Performance Curves 2.1 DC Input Precision FIGURE 2-1: Input Offset Voltage. FIGURE 2-2: Input Offset Voltage Drift. FIGURE 2-3: Input Offset Voltage Quadratic Temperature Coefficient. FIGURE 2-4: Input Offset Voltage vs. Power Supply Voltage with VCM = VCML. FIGURE 2-5: Input Offset Voltage vs. Power Supply Voltage with VCM = VCMH. FIGURE 2-6: Input Offset Voltage vs. Output Voltage with VDD = 2.4V. FIGURE 2-7: Input Offset Voltage vs. Output Voltage with VDD = 5.5V. FIGURE 2-8: Input Offset Voltage vs. Common-Mode Voltage with VDD = 2.4V. FIGURE 2-9: Input Offset Voltage vs. Common-Mode Voltage with VDD = 5.5V. FIGURE 2-10: Common-Mode Rejection Ratio. FIGURE 2-11: Power Supply Rejection Ratio. FIGURE 2-12: DC Open-Loop Gain. FIGURE 2-13: CMRR and PSRR vs. Ambient Temperature. FIGURE 2-14: DC Open-Loop Gain vs. Ambient Temperature. FIGURE 2-15: Input Bias and Offset Currents vs. Common-Mode Input Voltage with TA = +85°C. FIGURE 2-16: Input Bias and Offset Currents vs. Common-Mode Input Voltage with TA = +125°C. FIGURE 2-17: Input Bias and Offset Currents vs. Ambient Temperature with VDD = 5.5V. FIGURE 2-18: Input Bias Current vs. Input Voltage (Below VSS). 2.2 Other DC Voltages and Currents FIGURE 2-19: Input Common-Mode Voltage Headroom (Range) vs. Ambient Temperature. FIGURE 2-20: Output Voltage Headroom vs. Output Current. FIGURE 2-21: Output Voltage Headroom vs. Ambient Temperature. FIGURE 2-22: Output Short-Circuit Current vs. Power Supply Voltage. FIGURE 2-23: Supply Current vs. Power Supply Voltage. FIGURE 2-24: Power-On Reset Trip Voltage. FIGURE 2-25: Power-On Reset Voltage vs. Ambient Temperature. 2.3 Frequency Response FIGURE 2-26: CMRR and PSRR vs. Frequency. FIGURE 2-27: Open-Loop Gain vs. Frequency with VDD = 2.4V. FIGURE 2-28: Open-Loop Gain vs. Frequency with VDD = 5.5V. FIGURE 2-29: Gain Bandwidth Product and Phase Margin vs. Ambient Temperature. FIGURE 2-30: Gain Bandwidth Product and Phase Margin vs. Common-Mode Input Voltage. FIGURE 2-31: Gain Bandwidth Product and Phase Margin vs. Output Voltage. FIGURE 2-32: Closed-Loop Output Impedance vs. Frequency with VDD = 2.2V. FIGURE 2-33: Closed-Loop Output Impedance vs. Frequency with VDD = 5.5V. FIGURE 2-34: Maximum Output Voltage Swing vs. Frequency. FIGURE 2-35: EMIRR vs. Frequency. FIGURE 2-36: EMIRR vs. Input Voltage. FIGURE 2-37: Channel-to Channel Separation vs. Frequency. 2.4 Input Noise and Distortion FIGURE 2-38: Input Noise Voltage Density and Integrated Input Noise Voltage vs. Frequency. FIGURE 2-39: Input Noise Voltage Density vs. Input Common-Mode Voltage. FIGURE 2-40: Intermodulation Distortion vs. Frequency with VCM Disturbance (see Figure 1-6). FIGURE 2-41: Intermodulation Distortion vs. Frequency with VDD Disturbance (see Figure 1-6). FIGURE 2-42: Input Noise vs. Time with 1 Hz and 10 Hz Filters and VDD = 2.4V. FIGURE 2-43: Input Noise vs. Time with 1 Hz and 10 Hz Filters and VDD = 5.5V. 2.5 Time Response FIGURE 2-44: Input Offset Voltage vs. Time with Temperature Change. FIGURE 2-45: Input Offset Voltage vs. Time at Power-Up. FIGURE 2-46: The MCP6V91/1U/2/4 Family Shows No Input Phase Reversal with Overdrive. FIGURE 2-47: Noninverting Small Signal Step Response. FIGURE 2-48: Noninverting Large Signal Step Response. FIGURE 2-49: Inverting Small Signal Step Response. FIGURE 2-50: Inverting Large Signal Step Response. FIGURE 2-51: Slew Rate vs. Ambient Temperature. FIGURE 2-52: Output Overdrive Recovery vs. Time with G = -10 V/V. FIGURE 2-53: Output Overdrive Recovery Time vs. Inverting Gain. 3.0 Pin Descriptions TABLE 3-1: Pin Function Table 3.1 Analog Outputs (VOUT, VOUTA, VOUTB, VOUTC, VOUTD) 3.2 Analog Inputs (VIN+, VIN-, VINB+, VINB-, VINC-, VINC+, VIND-, VIND+) 3.3 Power Supply Pins (VDD, VSS) 3.4 Exposed Thermal Pad (EP) 4.0 Applications 4.1 Overview of Zero-Drift Operation FIGURE 4-1: Simplified Zero-Drift Op Amp Functional Diagram. FIGURE 4-2: First Chopping Clock Phase; Equivalent Amplifier Diagram. FIGURE 4-3: Second Chopping Clock Phase; Equivalent Amplifier Diagram. 4.2 Other Functional Blocks FIGURE 4-4: Simplified Analog Input ESD Structures. FIGURE 4-5: Protecting the Analog Inputs Against High Voltages. FIGURE 4-6: Protecting the Analog Inputs Against High Currents. 4.3 Application Tips FIGURE 4-7: Output Resistor, RISO, Stabilizes Capacitive Loads. FIGURE 4-8: Recommended RISO Values for Capacitive Loads. FIGURE 4-9: Output Load. FIGURE 4-10: Amplifier with Parasitic Capacitance. 4.4 Typical Applications FIGURE 4-11: Simple Design. FIGURE 4-12: RTD Sensor. FIGURE 4-13: Offset Correction. FIGURE 4-14: Precision Comparator. 5.0 Design Aids 5.1 FilterLab® Software 5.2 Microchip Advanced Part Selector (MAPS) 5.3 Analog Demonstration and Evaluation Boards 5.4 Application Notes 6.0 Packaging Information 6.1 Package Marking Information Appendix A: Revision History Revision B (March 2016) Revision A (September 2015) Product Identification System Trademarks Worldwide Sales and Service
ТМ Электроникс. Электронные компоненты и приборы. Скидки, кэшбэк и бесплатная доставка