AC-DC и DC-DC преобразователи напряжения Top Power на складе ЭЛТЕХ

Datasheet MCP6H01, MCP6H02, MCP6H04 (Microchip) - 4

ПроизводительMicrochip
ОписаниеThe MCP6H01 operational amplifier (op amp) has a wide supply voltage range of 3.5V to 16V and rail-to-rail output operation
Страниц / Страница46 / 4 — MCP6H01/2/4. DC ELECTRICAL SPECIFICATIONS (CONTINUED). Electrical …
Формат / Размер файлаPDF / 1.1 Мб
Язык документаанглийский

MCP6H01/2/4. DC ELECTRICAL SPECIFICATIONS (CONTINUED). Electrical Characteristics. Parameters. Sym. Min. Typ. Max. Units. Conditions

MCP6H01/2/4 DC ELECTRICAL SPECIFICATIONS (CONTINUED) Electrical Characteristics Parameters Sym Min Typ Max Units Conditions

34 предложений от 19 поставщиков
Микросхема Операционный усилитель, MICROCHIP MCP6H04-E/ST Operational Amplifier, Quad, 4 Amplifier, 1.2MHz, 0.8V/µs, ± 1.75V to ± 8V, TSSOP, 14Pins
ЧипСити
Россия
MCP6H04-E/ST
Microchip
82 ₽
IC Home
Весь мир
MCP6H04-E/ST
Microchip
126 ₽
DIP8.RU
Россия и страны ТС
MCP6H04-E/ST
Microchip
от 209 ₽
Элитан
Россия
MCP6H04-E/ST
Microchip
222 ₽
Открытие интернет-магазина MEAN WELL Market

Модельный ряд для этого даташита

Текстовая версия документа

link to page 5
MCP6H01/2/4 DC ELECTRICAL SPECIFICATIONS (CONTINUED) Electrical Characteristics
: Unless otherwise indicated, VDD = +3.5V to +16V, VSS = GND, TA = +25°C, V  CM = VDD/2 – 1.4V, VOUT VDD/2, VL = VDD/2 and RL = 10 kto VL. (Refer to Figure 1-1).
Parameters Sym Min Typ Max Units Conditions Output
High-Level Output Voltage VOH 3.490 3.495 — V VDD = 3.5V 0.5V input overdrive 4.985 4.993 — V VDD = 5V 0.5V input overdrive 14.970 14.980 — V VDD = 15V 0.5V input overdrive Low-Level Output Voltage VOL — 0.005 0.010 V VDD = 3.5V 0.5 V input overdrive — 0.007 0.015 V VDD = 5V 0.5 V input overdrive — 0.020 0.030 V VDD = 15V 0.5 V input overdrive Output Short-Circuit Current ISC — ±27 — mA VDD = 3.5V — ±45 — mA VDD = 5V — ±50 — mA VDD = 15V
Power Supply
Supply Voltage VDD 3.5 — 16 V Single-supply operation ±1.75 — ±8 V Dual-supply operation Quiescent Current per Amplifier IQ — 125 175 µA IO = 0, VDD = 3.5V VCM = VDD/4 — 130 180 µA IO = 0, VDD = 5V VCM = VDD/4 — 135 185 µA IO = 0, VDD = 15V VCM = VDD/4
AC ELECTRICAL SPECIFICATIONS Electrical Characteristics:
Unless otherwise indicated, TA = +25°C, VDD = +3.5V to +16V, VSS = GND, V  CM = VDD/2 - 1.4V, VOUT VDD/2, VL = VDD/2, RL = 10 kto VL and CL = 60 pF. (Refer to Figure 1-1).
Parameters Sym Min Typ Max Units Conditions AC Response
Gain Bandwidth Product GBWP — 1.2 — MHz Phase Margin PM — 57 — °C G = +1V/V Slew Rate SR — 0.8 — V/µs
Noise
Input Noise Voltage Eni — 12 — µVp-p f = 0.1 Hz to 10 Hz Input Noise Voltage Density eni — 35 — nV/Hz f = 1 kHz — 30 — nV/Hz f = 10 kHz Input Noise Current Density ini — 1.9 — fA/Hz f = 1 kHz DS22243D-page 4  2010-2011 Microchip Technology Inc. Document Outline 1.0 Electrical Characteristics 1.1 Absolute Maximum Ratings † 1.2 Test Circuits FIGURE 1-1: AC and DC Test Circuit for Most Specifications. 2.0 Typical Performance Curves FIGURE 2-1: Input Offset Voltage. FIGURE 2-2: Input Offset Voltage Drift. FIGURE 2-3: Input Offset Voltage vs. Common Mode Input Voltage. FIGURE 2-4: Input Offset Voltage vs. Common Mode Input Voltage. FIGURE 2-5: Input Offset Voltage vs. Common Mode Input Voltage. FIGURE 2-6: Input Offset Voltage vs. Output Voltage. FIGURE 2-7: Input Offset Voltage vs. Power Supply Voltage. FIGURE 2-8: Input Noise Voltage Density vs. Frequency. FIGURE 2-9: Input Noise Voltage Density vs. Common Mode Input Voltage. FIGURE 2-10: CMRR, PSRR vs. Frequency. FIGURE 2-11: CMRR, PSRR vs. Ambient Temperature. FIGURE 2-12: Input Bias, Offset Currents vs. Ambient Temperature. FIGURE 2-13: Input Bias Current vs. Common Mode Input Voltage. FIGURE 2-14: Quiescent Current vs. Ambient Temperature. FIGURE 2-15: Quiescent Current vs. Power Supply Voltage. FIGURE 2-16: Open-Loop Gain, Phase vs. Frequency. FIGURE 2-17: DC Open-Loop Gain vs. Power Supply Voltage. FIGURE 2-18: DC Open-Loop Gain vs. Output Voltage Headroom. FIGURE 2-19: Channel-to-Channel Separation vs. Frequency (MCP6H02 only). FIGURE 2-20: Gain Bandwidth Product, Phase Margin vs. Ambient Temperature. FIGURE 2-21: Gain Bandwidth Product, Phase Margin vs. Ambient Temperature. FIGURE 2-22: Output Short Circuit Current vs. Power Supply Voltage. FIGURE 2-23: Output Voltage Swing vs. Frequency. FIGURE 2-24: Output Voltage Headroom vs. Output Current. FIGURE 2-25: Output Voltage Headroom vs. Output Current. FIGURE 2-26: Output Voltage Headroom vs. Output Current. FIGURE 2-27: Output Voltage Headroom vs. Ambient Temperature. FIGURE 2-28: Output Voltage Headroom vs. Ambient Temperature. FIGURE 2-29: Output Voltage Headroom vs. Ambient Temperature. FIGURE 2-30: Slew Rate vs. Ambient Temperature. FIGURE 2-31: Slew Rate vs. Ambient Temperature. FIGURE 2-32: Small Signal Non-Inverting Pulse Response. FIGURE 2-33: Small Signal Inverting Pulse Response. FIGURE 2-34: Large Signal Non-Inverting Pulse Response. FIGURE 2-35: Large Signal Inverting Pulse Response. FIGURE 2-36: The MCP6H01/2/4 Shows No Phase Reversal. FIGURE 2-37: Closed Loop Output Impedance vs. Frequency. FIGURE 2-38: Measured Input Current vs. Input Voltage (below VSS). 3.0 Pin Descriptions TABLE 3-1: Pin Function Table 3.1 Analog Outputs 3.2 Analog Inputs 3.3 Power Supply Pins 3.4 Exposed Thermal Pad (EP) 4.0 Application Information 4.1 Inputs FIGURE 4-1: Simplified Analog Input ESD Structures. FIGURE 4-2: Protecting the Analog Inputs. FIGURE 4-3: Protecting the Analog Inputs. 4.2 Rail-to-Rail Output 4.3 Capacitive Loads FIGURE 4-4: Output Resistor, RISO Stabilizes Large Capacitive Loads. FIGURE 4-5: Recommended RISO Values for Capacitive Loads. 4.4 Supply Bypass 4.5 Unused Op Amps FIGURE 4-6: Unused Op Amps. 4.6 PCB Surface Leakage FIGURE 4-7: Example Guard Ring Layout for Inverting Gain. 4.7 Application Circuits FIGURE 4-8: High Side Current Sensing Using Difference Amplifier. FIGURE 4-9: Two Op Amp Instrumentation Amplifier. FIGURE 4-10: Photodetector Amplifier. 5.0 Design Aids 5.1 SPICE Macro Model 5.2 FilterLab Software 5.3 MAPS (Microchip Advanced Part Selector) 5.4 Analog Demonstration and Evaluation Boards 5.5 Application Notes 6.0 Packaging Information 6.1 Package Marking Information Corporate Office Atlanta Boston Chicago Cleveland Fax: 216-447-0643 Dallas Detroit Indianapolis Toronto Fax: 852-2401-3431 Australia - Sydney China - Beijing China - Shanghai India - Bangalore Korea - Daegu Korea - Seoul Singapore Taiwan - Taipei Fax: 43-7242-2244-393 Denmark - Copenhagen France - Paris Germany - Munich Italy - Milan Spain - Madrid UK - Wokingham Worldwide Sales and Service
ТМ Электроникс. Электронные компоненты и приборы. Скидки, кэшбэк и бесплатная доставка